Show simple item record

contributor authorZe-Yang Sun
contributor authorGang Wu
contributor authorZhi-Shen Wu
contributor authorMin Zhang
date accessioned2017-05-08T21:36:22Z
date available2017-05-08T21:36:22Z
date copyrightOctober 2011
date issued2011
identifier other%28asce%29cc%2E1943-5614%2E0000203.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57325
description abstractSteel-fiber-reinforced polymer (FRP) composite bars (SFCBs) are a novel reinforcement for concrete structures. Because of the FRP’s linear elastic characteristic and high ultimate strength, they can achieve a stable postyield stiffness even after the inner steel bar has yielded, which subsequently enables a performance-based seismic design to easily be implemented. In this study, lateral cyclic loading tests of concrete columns reinforced either by SFCBs or by ordinary steel bars were conducted with axial compression ratios of 0.12. The main variable parameters were the FRP type (basalt or carbon FRP) and the steel/FRP ratio of the SFCBs. The test results showed the following: (1) compared with ordinary RC columns, SFCB-reinforced concrete columns had a stable postyield stiffness after the SFCB’s inner steel bar yielded; (2) because of the postyield stiffness of the SFCB, the SFCB-reinforced concrete columns exhibited less column-base curvature demand than ordinary RC columns for a given column cap lateral deformation. Thus, reduced unloading residual deformation (i.e., higher postearthquake reparability) of SFCB columns could be achieved; (3) the outer FRP type of SFCB had a direct influence on the performance of SFCB-reinforced concrete columns, and concrete columns reinforced with steel-basalt FRP (BFRP) composite bars exhibited better ductility (i.e., a longer effective length of postyield stiffness) and a smaller unloading residual deformation under the same unloading displacement when compared with steel-carbon FRP (CFRP) composite bar columns; (4) the degradation of the unloading stiffness by an ordinary RC column based on the Takeda (TK) model was only suitable at a certain lateral displacement. In evaluating the reparability of important structures at the small plastic deformation stage, the TK model estimated a much smaller residual displacement, which is unsafe for important structures.
publisherAmerican Society of Civil Engineers
titleSeismic Behavior of Concrete Columns Reinforced by Steel-FRP Composite Bars
typeJournal Paper
journal volume15
journal issue5
journal titleJournal of Composites for Construction
identifier doi10.1061/(ASCE)CC.1943-5614.0000199
treeJournal of Composites for Construction:;2011:;Volume ( 015 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record