Show simple item record

contributor authorHakan Basarir
contributor authorCelal Karpuz
contributor authorLevent Tutluoğlu
date accessioned2017-05-08T21:32:04Z
date available2017-05-08T21:32:04Z
date copyrightJanuary 2008
date issued2008
identifier other%28asce%291532-3641%282008%298%3A1%2811%29.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/55136
description abstractDue to environmental constraints and limitations on blasting, ripping as a ground loosening and breaking method has become more popular than drilling and blasting method in both mining and civil engineering applications. The best way of estimating the rippability of rocks is to conduct direct ripping runs in the field. However, it is not possible to conduct direct ripping runs in all sites using different dozer types. Therefore, the utilization of numerical modeling of ripping systems becomes unavoidable. A complex ripping system can better be understood with three-dimensional (3D) models rather than two-dimensional models. In this study, 3D distinct element program called 3DEC was used to investigate the ripping process. First, the ripping mechanisms were investigated and then the individual factors that affect the rippability performance of dozers were reviewed. The rippabilities of rocks depend not only on the rock properties, but also machine or dozer properties. Thus, ripper production and rock rippability with D8 type of dozers were also determined by direct ripping runs on different open pit lignite mines within the scope of this research. Production values obtained from numerical modeling were compared with field production values obtained from the case studies. This comparison shows that the model gives consistent and adequate results. Hence, a link has been established between the field results and the 3D models.
publisherAmerican Society of Civil Engineers
title3D Modeling of Ripping Process
typeJournal Paper
journal volume8
journal issue1
journal titleInternational Journal of Geomechanics
identifier doi10.1061/(ASCE)1532-3641(2008)8:1(11)
treeInternational Journal of Geomechanics:;2008:;Volume ( 008 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record