Show simple item record

contributor authorV. M. Karbhari
contributor authorS. B. Shulley
date accessioned2017-05-08T21:16:51Z
date available2017-05-08T21:16:51Z
date copyrightNovember 1995
date issued1995
identifier other%28asce%290899-1561%281995%297%3A4%28239%29.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/45429
description abstractThe need to develop new materials and techniques capable of rapidly and cost-effectively rehabilitating infrastructure components motivated this study. Corrosion is a major cause of deterioration in civil infrastructure, especially steel bridges, with consequences ranging from the progressive weakening of structural elements due to cracking and loss of section, to sudden collapse. The high strength-to-weight and stiffness-to-weight ratios of composites make them attractive for use in infrastructure rehabilitation. In addition, composites have advantages such as high chemical and corrosion resistance, fatigue resistance, design flexibility, and ability to be tailored to match specific design requirements in different directions simultaneously. However, the ultimate success of the strategy depends on the durability of the bond between the composite and the base steel. Durability of the bond and the composite-steel system is investigated through the wedge test. It is shown that S-glass-based composites show the maximum durability, and it is proposed that a hybrid glass-carbon composite system be used to optimize durability and performance attributes.
publisherAmerican Society of Civil Engineers
titleUse of Composites for Rehabilitation of Steel Structures—Determination of Bond Durability
typeJournal Paper
journal volume7
journal issue4
journal titleJournal of Materials in Civil Engineering
identifier doi10.1061/(ASCE)0899-1561(1995)7:4(239)
treeJournal of Materials in Civil Engineering:;1995:;Volume ( 007 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record