| description abstract | Producing superior-quality recycled aggregates from demolition waste is challenging. Over the years, mec hanical treatment methods for removing attached mortar from aggregates have evolved significantly. The studies on effective recycled coarse aggregate (RCA) processing with optimized processing parameters using ball milling and characterization of processed RCA (RCA) are limited. In this study, central composite design in the response surface method was employed to optimize control process factors (charge, revolution time, and aggregate weight) with aggregate properties as responses (percentage mortar removal, water absorption WA, specific gravity Sg, impact value IV, and abrasion value AV). The aggregate processed with optimized processing parameters exhibited superior quality with enhanced physical properties. The effect of the processing of RCA on the mechanical properties of cement-treated bases was studied by utilizing processed RCA in cement-treated recycled concrete aggregate mixes. The microstructural analysis was performed using 3D-surface topography, scanning electron microscopy, and energy dispersive spectroscopy. The test results demonstrated a 63% reduction in water absorption and an improvement in Sg, IV, and AV by 12.3%, 38%, and 23.7%, respectively. It is also found that the unconfined compressive strength and flexural strength with processed RCA are improved by 31.5% and 45.7%, respectively. Natural coarse aggregate can be completely replaced with processed RCA in cement-treated bases with the optimized processing method. | |