description abstract | Rainfall, evaporation, tides and waves make the soil at coastlines show dynamic unsaturated characteristics. In order to cope with landslides, collapses, and coastline receding, microbially induced calcium carbonate precipitation (MICP) was recently implemented to reinforce the soil in slopes and coastal zones using a spraying method. However, most of the researches on MICP focus on soil with a static saturation degree, and there are few numerical researches about the MICP reactions under dynamic saturation degree. Therefore, a coupled numerical model capable of describing the evolutions of bacteria, substance, calcium carbonate (CaCO3), porosity, and permeability in unsaturated soil over time reasonably was developed based on the convective–diffusion–reaction theory and the Richards’ equation. The effect of MICP reactions on the parameters α, n, θs, θr in van Genuchten-Mualem (VG) model was considered. A large cylinder test (30 × 75 cm) about reinforcing sand based on the spraying method was carried out to validate the model. The CaCO3 distribution of the MICP infiltration and mineralization was fully reproduced and the concept of critical depth (Zcr) was proposed. The initial porosity, initial bacterial concentration, and spraying rate were the main parameters affecting the CaCO3 distribution and critical depth Zcr. When the bacterial concentration increased, the maximum CaCO3 content, critical depth Zcr, and normalized permeability coefficient (k/k0) indicated exponential increase, exponential increase, and exponential decrease. The saturated permeability coefficient of the sand was determined by the maximum calcium carbonate. The normalized permeability coefficient (k/k0) and critical depth Zcr showed an exponential decrease and a power function increase with the increase of the maximum CaCO3 content. | |