Show simple item record

contributor authorChunlei Zhang
contributor authorXuejie Zhang
contributor authorHonglong Wang
date accessioned2025-04-20T10:35:46Z
date available2025-04-20T10:35:46Z
date copyright10/3/2024 12:00:00 AM
date issued2024
identifier otherJMCEE7.MTENG-18455.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4305025
description abstractBasalt fiber–reinforced polymer (BFRP) is widely used to reinforce concrete due to its high strength, lightweight nature, good corrosion resistance, and low cost. Previous studies have shown that the double-helix BFRP macrofiber has better bond behavior with concrete compared with other types of BFRP fibers. This is attributed to its irregular geometry. The bond-slip behavior between double-helix BFRP macrofiber and concrete is further numerically studied in this study. The corresponding finite-element model is established, and the accuracy of the numerical method is validated by the experimental results based on fiber-matrix pullout tests. The effects of twisted pitches, bundle numbers, and cross-section shapes of the fiber on the bond-slip behavior are extensively investigated and discussed. It is shown by the numerical results that the bond stress and energy-dissipating capacity increase with the decrease of twisted pitches (30, 20, 10, and 5 mm). The bond stress of the fiber with a twisted pitch of 5 mm can be increased by 17.0% at most compared with the fiber with a twisted pitch of 30 mm. Furthermore, it is found that the double-helix BFRP fiber has higher bond stress than the fiber with three or four bundles, with corresponding increases of 11.9% and 16.9%, respectively.
publisherAmerican Society of Civil Engineers
titleNumerical Investigation of the Bond-Slip Behavior between Double-Helix BFRP Macrofibers and Concrete
typeJournal Article
journal volume36
journal issue12
journal titleJournal of Materials in Civil Engineering
identifier doi10.1061/JMCEE7.MTENG-18455
journal fristpage04024429-1
journal lastpage04024429-11
page11
treeJournal of Materials in Civil Engineering:;2024:;Volume ( 036 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record