Show simple item record

contributor authorPooya Dastpak
contributor authorRita L. Sousa
contributor authorFarzaneh Salles-Najar
contributor authorSina Javankhoshdel
contributor authorDaniel Dias
date accessioned2025-04-20T09:58:27Z
date available2025-04-20T09:58:27Z
date copyright10/10/2024 12:00:00 AM
date issued2024
identifier otherIJGNAI.GMENG-9887.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4303758
description abstractThis study aimed to emphasize the significance of spatial variability in soil strength parameters on the behavior of nailed walls, highlighting the necessity of probabilistic design approaches. The investigation involved a 7.2-m nailed wall reinforced with five nails, simulated using the local average subdivision random field theory combined with the limit equilibrium method and the FEM, known as the random limit equilibrium method (RLEM) and the random finite-element method (RFEM) approaches. Initially, the wall stability was evaluated by RLEM using 10,000 Latin hypercube sampling realizations. The wall was globally stable among all samples for a correlation length equal to its height (7.2 m). The wall behavior, associated displacements, moments, wall shear forces, nail axial forces, and ground settlements were examined using RFEM. The RFEM analysis reveals that different random fields influence the maximum displacement (Hmax), maximum moment (Mmax), and maximum shear force (Vmax) experienced by the wall. The cumulative distribution function plots were generated for the wall critical parameters, including Hmax, Mmax, and Vmax. Leveraging the simple weighted averaging and ordered weighted averaging techniques, different combinations of Hmax, Mmax, and Vmax were assessed with varying weight assumptions. This allowed us to identify critical random field realizations and estimate the level of risk using a newly introduced parameter, the decision index. Finally, the effect of different correlation lengths (isotropic and anisotropic) for two different coefficients of variation of soil strength parameters on the distribution of Hmax, Mmax, and Vmax was studied. The findings highlight the importance of considering the spatial variability of soil properties to achieve a reliable design of nailed walls.
publisherAmerican Society of Civil Engineers
titleProbabilistic Analysis of a Nailed Wall: Use of the Random Field Theory and Ordered Weighted Averaging Method
typeJournal Article
journal volume24
journal issue12
journal titleInternational Journal of Geomechanics
identifier doi10.1061/IJGNAI.GMENG-9887
journal fristpage04024293-1
journal lastpage04024293-17
page17
treeInternational Journal of Geomechanics:;2024:;Volume ( 024 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record