Show simple item record

contributor authorLei Xu
contributor authorPengfei Yu
contributor authorShaomu Wen
contributor authorYongfan Tang
contributor authorYunfu Wang
contributor authorYuan Tian
contributor authorTing Mao
contributor authorChangjun Li
date accessioned2024-04-27T22:28:18Z
date available2024-04-27T22:28:18Z
date issued2024/08/01
identifier other10.1061-JPSEA2.PSENG-1605.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296729
description abstractThe problem of corrosion in oil and gas pipelines is one of the major factors affecting the process safety and efficient sustainability development of the oil and gas industry. To gain a better understanding of global research trends and dynamics in the field of oil and gas pipeline corrosion and to advance the development of corrosion control technology, we conducted a literature review using a sample of 1,745 papers from the Web of Science (WOS) database published from 2002 to 2022. We employed a bibliometric analysis approach employed to investigate the distribution of publications over time, geographic regions, major organizations, major authors, journal cocitation, and literature cocitation, and to identify research hotspots and frontiers. The results revealed an exponential growth in the overall number of papers, with the most rapid increase occurring in the last 4 years. China, the US, Canada, the United Kingdom, and Brazil emerged as the most active countries in oil and natural gas pipeline corrosion research, and Mexico, Canada, and Australia also exhibited significant influence in the field. The journals Engineering Failure Analysis, Corrosion, and Corrosion Science had the highest number of publications and impact in this domain. Notably, Corrosion Science stood out as the most influential and highly regarded journal in the corrosion field. The fundamental theories and research framework in the realm of oil and natural gas pipeline corrosion have been primarily established, and a large number of research directions and frontier branches are emerging. The impact of flow parameters on corrosion, pipeline reliability assessment, and analysis of corrosion defects and failures are identified as the three main development paths in this field. In terms of research methodologies, machine learning techniques are becoming increasingly prevalent, with a growing number of studies adopting various machine learning methods. Among these methods, explainable deep learning is at the forefront of development in the field of oil and natural gas pipeline corrosion.
publisherASCE
titleVisualization and Analysis of Oil and Gas Pipeline Corrosion Research: A Bibliometric Data-Mining Approach
typeJournal Article
journal volume15
journal issue3
journal titleJournal of Pipeline Systems Engineering and Practice
identifier doi10.1061/JPSEA2.PSENG-1605
journal fristpage04024017-1
journal lastpage04024017-15
page15
treeJournal of Pipeline Systems Engineering and Practice:;2024:;Volume ( 015 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record