Show simple item record

contributor authorYuyan “Annie” Pan
contributor authorHan Zheng
contributor authorJifu Guo
contributor authorYanyan Chen
date accessioned2024-04-27T20:55:49Z
date available2024-04-27T20:55:49Z
date issued2023/11/01
identifier other10.1061-JTEPBS.TEENG-7903.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4296266
description abstractTraffic congestion occurs when there is a mismatch between the demand for road use and the available capacity. The volume-delay function (VDF) can quantify the relationship between travel time and the volume of traffic on a particular link, and also provide insight into the state of a traffic system, such as whether it is congested or uncongested. In this paper, we present a VDF model that is based on the fundamental diagram and has two main components: (1) an improved VDF with fewer parameters that can handle both congested and uncongested traffic conditions, based on a fundamental diagram, and (2) a model-based VDF practical calibration framework for practical traffic applications that can determine key parameters for a link in a corridor. Our experiments using corridors in Los Angeles and Beijing demonstrate that our proposed analytical methods effectively calculate road impedance under congested conditions. The results indicate that the proposed model is superior to other existing models in terms of the root mean squared error (RMSE) and mean absolute error (MAE). In addition, our calibrated results indicate that the travel time index (TTI) in Los Angeles is 2.12, in Beijing is 1.74. The model proposed in this paper provides a useful calibration tool for enhancing model performance and improving the accuracy of travel time and speed estimates in traffic assignment.
publisherASCE
titleModified Volume-Delay Function Based on Traffic Fundamental Diagram: A Practical Calibration Framework for Estimating Congested and Uncongested Conditions
typeJournal Article
journal volume149
journal issue11
journal titleJournal of Transportation Engineering, Part A: Systems
identifier doi10.1061/JTEPBS.TEENG-7903
journal fristpage04023112-1
journal lastpage04023112-14
page14
treeJournal of Transportation Engineering, Part A: Systems:;2023:;Volume ( 149 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record