Show simple item record

contributor authorNarnepati Krishna Chaitanya
contributor authorLakshmi Pathi Thulluru
contributor authorPritha Chatterjee
date accessioned2023-11-27T23:31:17Z
date available2023-11-27T23:31:17Z
date issued10/1/2023 12:00:00 AM
date issued2023-10-01
identifier otherJHTRBP.HZENG-1229.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4293627
description abstractA microbial electrosynthesis cell (MES) is an electrochemical technique in which electrolithoautotrophic electroactive microbes fix carbon dioxide (CO2) to longer-chain volatile fatty acids (VFAs). The synthesis of VFAs from CO2 requires optimization to improve the MES performance for industrial feasibility. This work studied the effect of different parameters, such as pH, headspace gas pressure, ethanol concentration, electrolyte, and trace element concentrations, on VFA synthesis from CO2 that used mixed anaerobic consortia in serum bottles. The operational parameters were varied according to a central composite design (CCD) and response surface methodology (RSM). A global optimum for the response variables was determined. The optimum values of different operating factors to maximize VFA production that was obtained from the optimizations were 1.12 × 105 Pa pressure, pH 7.149, ethanol = 2,318.7 mg/L, three times the standard Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) 300 electrolyte concentration and five times the standard DSMZ 300 trace elements concentration. The experimental study was validated in triplicate, which considered the optimal values. The rate of total VFA production that was obtained from the operational parameters experimental study was 43.7 ± 5.9 mg/L/day under this optimized condition, which agreed with the predicted value of 30.39 mg/L/day. For the media optimization, validation of the experimental study was conducted at the optimal values, and their experimental response was 79.75 ± 19.26 mg/L/day, and the predicted response was 75.89 mg/L/day for total VFA production rates.
publisherASCE
titleOptimization of Long-Chain Fatty Acid Synthesis from CO2 Using Response Surface Methodology
typeJournal Article
journal volume27
journal issue4
journal titleJournal of Hazardous, Toxic, and Radioactive Waste
identifier doi10.1061/JHTRBP.HZENG-1229
journal fristpage04023017-1
journal lastpage04023017-7
page7
treeJournal of Hazardous, Toxic, and Radioactive Waste:;2023:;Volume ( 027 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record