Show simple item record

contributor authorHaoyan Wei
contributor authorC. T. Wu
contributor authorWei Hu
contributor authorTung-Huan Su
contributor authorHitoshi Oura
contributor authorMasato Nishi
contributor authorTadashi Naito
contributor authorStan Chung
contributor authorLeo Shen
date accessioned2023-08-16T19:02:17Z
date available2023-08-16T19:02:17Z
date issued2023/03/01
identifier otherJENMDT.EMENG-6945.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4292660
description abstractShort fiber–reinforced composites (SFRCs) are high-performance engineering materials for lightweight structural applications in the automotive and electronics industries. Typically, SFRC structures are manufactured by injection molding, which induces heterogeneous microstructures, and the resulting nonlinear anisotropic behaviors are challenging to predict by conventional micromechanical analyses. In this work, we present a machine learning–based multiscale method by integrating injection molding–induced microstructures, material homogenization, and deep material network (DMN) in the finite-element simulation software LS-DYNA for structural analysis of SFRC. DMN is a physics-embedded machine learning model that learns the microscale material morphologies hidden in representative volume elements of composites through offline training. By coupling DMN with finite elements, we have developed a highly accurate and efficient data-driven approach that predicts nonlinear behaviors of composite materials and structures at a computational speed orders of magnitude faster than the high-fidelity direct numerical simulation. To model industrial-scale SFRC products, transfer learning is utilized to generate a unified DMN database, which effectively captures the effects of injection molding–induced fiber orientations and volume fractions on the overall composite properties. Numerical examples are presented to demonstrate the promising performance of this LS-DYNA machine learning–based multiscale method for SFRC modeling.
publisherAmerican Society of Civil Engineers
titleLS-DYNA Machine Learning–Based Multiscale Method for Nonlinear Modeling of Short Fiber–Reinforced Composites
typeJournal Article
journal volume149
journal issue3
journal titleJournal of Engineering Mechanics
identifier doi10.1061/JENMDT.EMENG-6945
journal fristpage04023003-1
journal lastpage04023003-15
page15
treeJournal of Engineering Mechanics:;2023:;Volume ( 149 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record