Show simple item record

contributor authorPengcheng Li
contributor authorDavid Z. Zhu
contributor authorJames Crossman
contributor authorAlf Leake
contributor authorRan Li
date accessioned2023-04-07T00:32:19Z
date available2023-04-07T00:32:19Z
date issued2022/12/01
identifier other%28ASCE%29HY.1943-7900.0002020.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4289237
description abstractSupersaturated total dissolved gases (TDGs) generated by dams can cause gas bubble trauma and mortality in fish in downstream waters. In this study, we evaluated air entrainment and generation of supersaturated TDG at two submerged low-level outlets (LLOs) at Hugh L. Keenleyside Dam, British Columbia, Canada. Specifically, we determined how air entrainment (less than 1% volume fraction) through the gate well, discharge level through the outlets, and geometry of the stilling basins at the south and north ends of the dam influenced supersaturated TDG generation. A mathematical formulation was developed, incorporating physical processes including air entrainment, bubble breakup, and gas transfer. Numerical modeling was also adopted to validate turbulence and flowfield downstream of the submerged low-level outlets. Despite being 8-m shallower, significantly higher TDG levels were measured in the stilling basin of the south LLO (about 120%) compared to that of the north LLO (≤110%). Results show that turbulence in the stilling basin can produce smaller bubbles and increase the mass transfer coefficient across bubbles, which will substantially enhance gas transfer and TDG generation. Higher TDG generated in the shallower LLO was therefore attributed to the water depth generating stronger turbulence flow, with more efficient gas transfer. This study improves TDG prediction and helps inform the development of operational alternatives during periods of high TDG generation to mitigate impacts on the aquatic environment.
publisherASCE
titleGeneration of Supersaturated Total Dissolved Gases from Low-Level Outlets at Hydropower Facilities
typeJournal Article
journal volume148
journal issue12
journal titleJournal of Hydraulic Engineering
identifier doi10.1061/(ASCE)HY.1943-7900.0002020
journal fristpage05022005
journal lastpage05022005_13
page13
treeJournal of Hydraulic Engineering:;2022:;Volume ( 148 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record