Show simple item record

contributor authorZhijie Huang
contributor authorWensu Chen
contributor authorHong Hao
contributor authorRoland Aurelio
contributor authorZhixing Li
contributor authorThong M. Pham
date accessioned2022-05-07T20:03:45Z
date available2022-05-07T20:03:45Z
date issued2021-11-25
identifier other(ASCE)MT.1943-5533.0004074.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4281944
description abstractThe application of geopolymer concrete (GPC) in construction could reduce a large amount of carbon dioxide (CO2) emission, which is greatly beneficial to environmental sustainability. Structures made of GPC might be subjected to extreme loading such as impact and blast loads. Therefore, a good understanding of the dynamic properties of GPC is essential to provide reliable predictions of performance of GPC structures subjected to dynamic loading. This study presents an experimental investigation on the dynamic compressive and splitting tensile properties of ambient-cured GPC using split Hopkinson pressure bar (SHPB), with the strain rate up to 161.0  s−1 for dynamic compression and 10.3  s−1 for dynamic splitting tension. The failure mode and damage progress of GPC specimens, energy absorption, and dynamic increase factor (DIF) were studied. Test results showed that ambient-cured GPC exhibited strain rate sensitivity. The compressive and splitting tensile DIFs increased with the strain rate and the ambient-cured GPC with lower quasi-static compressive strength exhibited higher DIFs under both dynamic compression and splitting tension. Empirical formulas were proposed to predict the DIF of ambient-cured GPC. Furthermore, the specific energy absorption of ambient-cured GPC under dynamic compression increased approximately linearly with the strain rate.
publisherASCE
titleTest of Dynamic Mechanical Properties of Ambient-Cured Geopolymer Concrete Using Split Hopkinson Pressure Bar
typeJournal Paper
journal volume34
journal issue2
journal titleJournal of Materials in Civil Engineering
identifier doi10.1061/(ASCE)MT.1943-5533.0004074
journal fristpage04021440
journal lastpage04021440-11
page11
treeJournal of Materials in Civil Engineering:;2021:;Volume ( 034 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record