Show simple item record

contributor authorWei Cui
contributor authorLin Zhao
contributor authorYaojun Ge
date accessioned2022-02-01T22:01:14Z
date available2022-02-01T22:01:14Z
date issued8/1/2021
identifier other%28ASCE%29BE.1943-5592.0001747.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4272471
description abstractConventionally, for turbulence-induced buffeting vibrations, the Gaussianity assumption is applied to all three subsequent stages of turbulence, wind loads, and structural vibrations because of its wide applicability and mathematical simplicity. However, non-Gaussian turbulence does exist in the boundary-layer atmosphere, especially near the tropical cyclone center. Non-Gaussian turbulence represents short duration and high-speed airflow, which is unfavorable for structural dynamic performance and reliability. It is necessary to analyze the non-Gaussian turbulence effect on flexible structures, especially long-span bridges, and compare the wind-induced vibration against responses caused by conventional Gaussian turbulence. The time domain bridge buffeting analysis method with unsteady aeroelastic force and aerodynamic admittance approximated by rational function was employed to calculate the vibrations excited by Gaussian and non-Gaussian turbulence, which were simulated using the spectrum representation method and the Hermit polynomial translation process method. A Monte Carlo simulation of bridge buffeting was conducted in this study. The statistical results show that the bridge response, excited either by Gaussian or non-Gaussian turbulence, still follows the Gaussian process assumption. However, for the same wind speed, Monte Carlo simulation shows that the vibration amplitudes increases with turbulence skewness in terms of RMS and extreme values. However, the increment ratio decreases with greater mean wind speeds. The peak factors also increase slightly for greater turbulence skewness.
publisherASCE
titleNon-Gaussian Turbulence Induced Buffeting Responses of Long-Span Bridges
typeJournal Paper
journal volume26
journal issue8
journal titleJournal of Bridge Engineering
identifier doi10.1061/(ASCE)BE.1943-5592.0001747
journal fristpage04021057-1
journal lastpage04021057-16
page16
treeJournal of Bridge Engineering:;2021:;Volume ( 026 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record