Show simple item record

contributor authorHossein Heydarinouri
contributor authorMasoud Motavalli
contributor authorAlain Nussbaumer
contributor authorElyas Ghafoori
date accessioned2022-01-31T23:45:24Z
date available2022-01-31T23:45:24Z
date issued3/1/2021
identifier other%28ASCE%29ST.1943-541X.0002923.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4270300
description abstractStringer-to-floor beam web-to-web double-angle connections are among the most fatigue-prone elements in old riveted bridges. These connections are often designed to carry only shear loads. However, in these elements, fatigue damage occurs because of the out-of-plane deformation of the connections, which is ignored in the original design. In this study, a new retrofitting system is developed to reduce the out-of-plane deformation of the connections using prestressed carbon fiber-reinforced polymer (CFRP) rods. The proposed system consists of a mechanical wedge-barrel anchor to hold the prestressed CFRP rod and a clamping system to attach to the parent structure and to transmit forces via friction. A series of finite-element (FE) simulations was conducted to optimize the size and performance of the retrofit system. Laboratory static pull-off tests were conducted and different failure modes were studied and discussed. A novel test setup (with four supports) was designed for testing the steel connections. The effect of the geometrical imperfections during the installation of the connection was carefully investigated using the FE models and was verified through laboratory the tests. Laboratory fatigue tests were conducted on steel connections with the same dimensions as those in a railway bridge. The designed retrofit system was found to be capable of reducing the stresses at the angle connections by more than 40%. The results of the fatigue tests demonstrated that the designed system could survive more than 11  million load cycles without any fatigue damage or any indication of a loss in the CFRP prestressing level.
publisherASCE
titleDevelopment of Mechanical Strengthening System for Bridge Connections Using Prestressed CFRP Rods
typeJournal Paper
journal volume147
journal issue3
journal titleJournal of Structural Engineering
identifier doi10.1061/(ASCE)ST.1943-541X.0002923
journal fristpage04020351-1
journal lastpage04020351-19
page19
treeJournal of Structural Engineering:;2021:;Volume ( 147 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record