| description abstract | In this study, a biomass briquette boiler from the Yunnan Dianhong pharmaceutical industry is considered as the research object. Using the computational hydrodynamics software FLUENT, a three-dimensional dynamic model of the boiler bed combustion is established. Based on simulation results and the accuracy of the data verification model of a field test, the effect of the air preheating temperature, bed thickness, and particle diameter on the combustion of the boiler bed is simulated by using the model. The results demonstrate that within reasonable ranges, at an air preheating temperature of 250°C, fuel bed thickness of 0.1 m, and grain diameter of 0.02 m, the sooner the bed surface gas reaches its highest temperature, the sooner the combustion is completed, and the highest temperature on the fuel bed changes more significantly with the depth. This study offers a reference model for the bed combustion of biomass briquettes and serves as a basis for the overall systematic design and optimized modeling of biomass briquette boilers. | |