Show simple item record

contributor authorMiguel E. Vázquez-Méndez
contributor authorG. Casal
contributor authorJuan B. Ferreiro
date accessioned2022-01-30T21:09:48Z
date available2022-01-30T21:09:48Z
date issued2/1/2020 12:00:00 AM
identifier other%28ASCE%29SU.1943-5428.0000299.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4267753
description abstractThe clothoid, also known as Cornu spiral or Euler spiral, is a curve widely used as a transition curve when designing the layout of railway tracks and roads because of a key feature: its curvature is proportional to its length. The classical method to compute a clothoid is based on the use of Taylor expansions of sine and cosine functions, usually starting with zero curvature at the initial point. In this paper the clothoid is presented as the only curve with a constant rate of change of curvature, which parametrization can be obtained by solving an initial value problem. In this initial value problem the curvature at the starting point can be chosen, being able to develop simple, efficient, and accurate algorithms to connect two oriented circumferences by means of clothoids. These algorithms are presented as a useful tool for designing egg and double-egg curves in highway connections and interchanges.
publisherASCE
titleNumerical Computation of Egg and Double-Egg Curves with Clothoids
typeJournal Paper
journal volume146
journal issue1
journal titleJournal of Surveying Engineering
identifier doi10.1061/(ASCE)SU.1943-5428.0000299
page8
treeJournal of Surveying Engineering:;2020:;Volume ( 146 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record