Show simple item record

contributor authorLuca Possidente
contributor authorNicola Tondini
contributor authorJean-Marc Battini
date accessioned2022-01-30T20:13:06Z
date available2022-01-30T20:13:06Z
date issued2020
identifier other%28ASCE%29ST.1943-541X.0002665.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266705
description abstractThe paper presents the development of a three-dimensional (3D) beam element for the analysis of steel structures in fire that properly accounts for the degradation of the torsional strength and stiffness owing to thermal exposure. The element is well-suited for the analysis of members that are subjected to significant torsional effects, as steel members with open cross-sections subjected to torsion, lateral-torsional buckling, and torsional buckling. The element is based on a corotational formulation and small strains assumption, while the local formulation was developed according to both the Timoshenko and Bernoulli beam theories. The stress-strain relationship and thermal expansion of steel were implemented according to Eurocode EN 1993-1-2 (CEN 2005). A comprehensive numerical analysis was performed and results for several case studies are presented in the paper to assess the performance of the 3D beam element. The outcomes indicated very good agreement when compared with shell-based models, highlighting promising capabilities of modeling steel structures in fire. Moreover, the proposed element showed more accurate results with respect to beam elements included into two commercial software, i.e., ABAQUS and SAFIR.
publisherASCE
title3D Beam Element for the Analysis of Torsional Problems of Steel-Structures in Fire
typeJournal Paper
journal volume146
journal issue7
journal titleJournal of Structural Engineering
identifier doi10.1061/(ASCE)ST.1943-541X.0002665
page04020125
treeJournal of Structural Engineering:;2020:;Volume ( 146 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record