Show simple item record

contributor authorPhuttipong Sudla
contributor authorJeerapan Donrak
contributor authorMenglim Hoy
contributor authorSuksun Horpibulsuk
contributor authorArul Arulrajah
contributor authorAhmad Safuan A. Rashid
contributor authorRamli Nazir
contributor authorWisanukhorn Samingthong
date accessioned2022-01-30T19:53:25Z
date available2022-01-30T19:53:25Z
date issued2020
identifier other%28ASCE%29MT.1943-5533.0003011.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4266152
description abstractRoad construction consumes vast quantities of high-quality quarry materials. Lateritic soil (LS) is commonly used as a natural resource for subbase and base materials in Thailand. This research aims to study the feasibility of using crushed slag (CS) and fly ash (FA) to improve the physical properties of marginal LS prior to cement (C) stabilization for pavement applications. The pozzolanic materials in CS and FA were found to react with Ca(OH)2 produced by hydration, which results in the formation of cementitious products over time. Geotechnical engineering laboratory tests were conducted to evaluate the possibility of using cement stabilized LS/CS/FA blends as pavement subbase/base materials. The durability of the blends against wetting and drying cycles were also studied. The unconfined compressive strength (UCS) development of the mixtures was examined by using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. CS was found to have a high potential for minimizing swelling, which controls the durability of the stabilized material. Based on the specification of the Department of Highways, Thailand, the 3% C samples were found to be suitable as a subbase material when blended with 30% CS replacement and as a base material when blended with CS and FA at LS:CS:FA=70∶0∶30 and 70∶15∶15. The CS replacement was found to prolong the service life of stabilized subbases/bases with up to 12 wetting-drying cycles. This research confirms the possibility of incorporating LS/CS/FA in road work applications, with significant environmental benefits.
publisherASCE
titleLaboratory Investigation of Cement-Stabilized Marginal Lateritic Soil by Crushed Slag–Fly Ash Replacement for Pavement Applications
typeJournal Paper
journal volume32
journal issue2
journal titleJournal of Materials in Civil Engineering
identifier doi10.1061/(ASCE)MT.1943-5533.0003011
page04019353
treeJournal of Materials in Civil Engineering:;2020:;Volume ( 032 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record