Show simple item record

contributor authorGibbs, Jeremy A.;Fedorovich, Evgeni
date accessioned2022-01-30T17:51:40Z
date available2022-01-30T17:51:40Z
date copyright10/14/2020 12:00:00 AM
date issued2020
identifier issn0022-4928
identifier otherjasd200038.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264072
description abstractWe extend our previous study, which dealt with structure functions of potential temperature fluctuations, and focus on the characteristics of second-order velocity structure functions and corresponding structure parameters in the atmospheric convective boundary layer. We consider the three previously reported methods to compute the structure parameters of turbulent velocity fields: the direct method, the true spectral method, and the approximate spectral method. The methods are evaluated using high-resolution gridded numerical data from large-eddy simulations of shear-free and shear-driven convective boundary layers. Results indicate that the direct and true spectral methods are more suitable than the approximate spectral method, which overestimates the structure parameters of velocity as a result of assuming the inertial-subrange shape of the velocity spectrum for all turbulence scales. Results also suggest that structure parameters of vertical velocity fluctuations are of limited utility because of violations of local isotropy, especially in shear-free convective boundary layers.
publisherAmerican Meteorological Society
titleStructure Functions and Structure Parameters of Velocity Fluctuations in Numerically Simulated Atmospheric Convective Boundary Layer Flows
typeJournal Paper
journal volume77
journal issue10
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-20-0038.1
journal fristpage3619
journal lastpage3630
treeJournal of the Atmospheric Sciences:;2020:;volume( 77 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record