Show simple item record

contributor authorPeng, Chin-Hsuan;Wu, Chun-Chieh
date accessioned2022-01-30T17:50:58Z
date available2022-01-30T17:50:58Z
date copyright9/15/2020 12:00:00 AM
date issued2020
identifier issn0022-4928
identifier otherjasd190348.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4264049
description abstractThe rapid intensification (RI) of Typhoon Soudelor (2015) is simulated using a full-physics model. To investigate how the outer-core surface heat fluxes affect tropical cyclone (TC) structure and RI processes, a series of numerical experiments are performed by suppressing surface heat fluxes between various radii. It is found that a TC would become quite weaker when the surface heat fluxes are suppressed outside the radius of 60 or 90 km (the radius of maximum surface wind in CTRL at the onset of RI is roughly 60 km). However, interestingly, the TC would experience stronger RI when the surface heat fluxes are suppressed outside the radius of 150 km. For those sensitivity experiments with capped surface heat fluxes, the members with greater intensification rate show stronger inner-core mid- to upper-level updrafts and higher heating efficiency prior to the RI periods. Although the outer-core surface heat fluxes in these members are suppressed, the inner-core winds become stronger, extracting more ocean energy from the inner core. Greater outer-core low-level stability in these members results in aggregation of deep convection and subsequent generation and concentration of potential vorticity inside the inner core, thus confining the strongest winds therein. The above-mentioned findings are also supported by partial-correlation analyses, which reveal the positive correlation between the inner-core convection and subsequent 6-h intensity change, and the competition between the inner-core and outer-core convections (i.e., eyewall and outer rainbands).
publisherAmerican Meteorological Society
titleThe Impact of Outer-Core Surface Heat Fluxes on the Convective Activities and Rapid Intensification of Tropical Cyclones
typeJournal Paper
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-19-0348.1
journal fristpage1
journal lastpage65
treeJournal of the Atmospheric Sciences:;2020:;volume( ):;issue: -
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record