Show simple item record

contributor authorTaszarek, Mateusz;Allen, John T.;Brooks, Harold E.;Pilguj, Natalia;Czernecki, Bartosz
date accessioned2022-01-30T17:47:26Z
date available2022-01-30T17:47:26Z
date copyright9/14/2020 12:00:00 AM
date issued2020
identifier issn0003-0007
identifier otherbamsd200004.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263942
description abstractStronger convective inhibition causes a decline in the frequency of thunderstorms over the United States, while a substantial increase in low-level moisture supports more thunderstorms over southern, central and northern parts of Europe.Long-term trends in the historical frequency of environments supportive of atmospheric convection are unclear, and only partially follow the expectations of a warming climate. This uncertainty is driven by the lack of unequivocal changes in the ingredients for severe thunderstorms (i.e. conditional instability, sufficient low-level moisture, initiation mechanism and vertical wind shear). ERA5 hybrid-sigma data allows for superior characterization of thermodynamic parameters including convective inhibition, which is very sensitive to the number of levels in the lower troposphere. Using hourly data we demonstrate that long-term decreases in instability and stronger convective inhibition cause a decline in the frequency of thunderstorm environments over the southern United States, particularly summer. Conversely, increasingly favourable conditions for tornadoes are observed during winter across the Southeast. Over Europe, a pronounced multidecadal increase in low-level moisture has provided positive trends in thunderstorm environments over south, central and north, with decreases over the east due to strengthening convective inhibition. Modest increases in vertical wind shear and storm-relative helicity have been observed over northwestern Europe and the Great Plains. Both continents exhibit negative trends in the fraction of environments with likely convective initiation. This suggests that despite increasing instability, thunderstorms in a warming climate may be less likely to develop due to stronger convective inhibition and lower relative humidity. Decreases in convective initiation and resulting precipitation may have long-term implications for agriculture, water availability and the frequency of severe weather such as large hail and tornadoes. Our results also indicate that trends observed over the United States cannot be assumed to be representative of other continents.
publisherAmerican Meteorological Society
titleDiffering trends in United States and European severe thunderstorm environments in a warming climate
typeJournal Paper
journal titleBulletin of the American Meteorological Society
identifier doi10.1175/BAMS-D-20-0004.1
journal fristpage1
journal lastpage51
treeBulletin of the American Meteorological Society:;2020:;volume( ):;issue: -
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record