Show simple item record

contributor authorGlotfelty, Timothy
contributor authorAlapaty, Kiran
contributor authorHe, Jian
contributor authorHawbecker, Patrick
contributor authorSong, Xiaoliang
contributor authorZhang, Guang
date accessioned2019-10-05T06:54:36Z
date available2019-10-05T06:54:36Z
date copyright1/31/2019 12:00:00 AM
date issued2019
identifier otherMWR-D-18-0267.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263809
description abstractAbstractThe Weather Research and Forecasting Model with Aerosol?Cloud Interactions (WRF-ACI) is developed for studying aerosol effects on gridscale and subgrid-scale clouds using common aerosol activation and ice nucleation formulations and double-moment cloud microphysics in a scale-aware subgrid-scale parameterization scheme. Comparisons of both the standard WRF and WRF-ACI models? results for a summer season against satellite and reanalysis estimates show that the WRF-ACI system improves the simulation of cloud liquid and ice water paths. Correlation coefficients for nearly all evaluated parameters are improved, while other variables show slight degradation. Results indicate a strong cloud lifetime effect from current climatological aerosols increasing domain average cloud liquid water path and reducing domain average precipitation as compared to a simulation with aerosols reduced by 90%. Increased cloud-top heights indicate a thermodynamic invigoration effect, but the impact of thermodynamic invigoration on precipitation is overwhelmed by the cloud lifetime effect. A combination of cloud lifetime and cloud albedo effects increases domain average shortwave cloud forcing by ~3.0 W m?2. Subgrid-scale clouds experience a stronger response to aerosol levels, while gridscale clouds are subject to thermodynamic feedbacks because of the design of the WRF modeling framework. The magnitude of aerosol indirect effects is shown to be sensitive to the choice of autoconversion parameterization used in both the gridscale and subgrid-scale cloud microphysics, but spatial patterns remain qualitatively similar. These results indicate that the WRF-ACI model provides the community with a computationally efficient tool for exploring aerosol?cloud interactions.
publisherAmerican Meteorological Society
titleThe Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI): Development, Evaluation, and Initial Application
typeJournal Paper
journal volume147
journal issue5
journal titleMonthly Weather Review
identifier doi10.1175/MWR-D-18-0267.1
journal fristpage1491
journal lastpage1511
treeMonthly Weather Review:;2019:;volume 147:;issue 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record