Show simple item record

contributor authorGu, Jian-Feng
contributor authorTan, Zhe-Min
contributor authorQiu, Xin
date accessioned2019-10-05T06:51:35Z
date available2019-10-05T06:51:35Z
date copyright5/9/2019 12:00:00 AM
date issued2019
identifier otherJAS-D-18-0282.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4263645
description abstractAbstractThe coupling of vortex tilt and convection, and their effects on the intensification variability of tropical cyclones (TCs) in directional shear flows, is investigated in this study. The height-dependent vortex tilt controls TC structural differences in clockwise (CW) and counterclockwise (CC) hodographs during their initial stage of development. Moist convection may enhance the coupling between displaced vortices at different levels and thus reduce the vortex tilt amplitude and enhance precession of the overall vortex tilt during the early stage of development. However, differences in the overall vortex tilt between CW and CC hodographs are further amplified by a feedback from convective heating and therefore result in much higher intensification rates for TCs in CW hodographs than those in CC hodographs. In CW hodographs, convection organization in the left-of-shear region is favored because the low-level vortex tilt is ahead of the overall vortex tilt and the TC moves to the left side of the deep-layer shear. This results in a more humid midtroposphere and stronger surface heat flux on the left side (azimuthally downwind) of the overall vortex tilt, thus providing a positive feedback and supporting continuous precession of the vortex tilt into the upshear-left region. In CC hodographs, convection tends to organize on the right side (azimuthally upwind) of the overall vortex tilt because the low-level vortex tilt is behind the overall vortex tilt and the TC moves to the right side of the deep-layer shear. In addition, convection organizes radially outward near the downshear-right region, which weakens convection within the inner region. These configurations lead to a drier midtroposphere and weaker surface heat flux in the downwind region of the overall vortex tilt and also a broader potential vorticity skirt. As a result, a negative feedback is established that prevents continuous precession of the overall vortex tilt.
publisherAmerican Meteorological Society
titleIntensification Variability of Tropical Cyclones in Directional Shear Flows: Vortex Tilt–Convection Coupling
typeJournal Paper
journal volume76
journal issue6
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-18-0282.1
journal fristpage1827
journal lastpage1844
treeJournal of the Atmospheric Sciences:;2019:;volume 076:;issue 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record