Show simple item record

contributor authorTang, Xiaodong
contributor authorTan, Zhe-Min
contributor authorFang, Juan
contributor authorMunsell, Erin B.
contributor authorZhang, Fuqing
date accessioned2019-09-22T09:03:39Z
date available2019-09-22T09:03:39Z
date copyright12/5/2018 12:00:00 AM
date issued2018
identifier otherJAS-D-18-0131.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262624
description abstractThis work examines the impacts of the diurnal radiation contrast on the contraction rate of the radius of maximum wind (RMW) during intensification of Hurricane Edouard (2014) through convection-permitting simulations. Rapid contraction of RMW occurs both in the low and midlevels for the control run and the sensitivity run without solar insolation, while the tropical cyclone contracts more slowly in the low levels and later in the midlevels and thereafter fails to intensify continuously in the absence of the night phase, under weak vertical wind shear (~4 m s?1). The clouds at the top of the boundary layer absorb solar shortwave heating during the daytime, which enhanced the temperature inversion there and increased the convective inhibition, while nighttime destabilization and moistening in low levels through radiative cooling decrease convective inhibition and favor more convection inside the RMW than in the daytime phase. The budget analysis of the tangential wind tendency reveals that the greater positive radial vorticity flux inside of the RMW is the key RMW contraction mechanism in the boundary layer at night because of the enhanced convection. However, the greater positive vertical advection of tangential wind inside of the RMW dominates the RMW contraction in the midlevels.
publisherAmerican Meteorological Society
titleImpact of the Diurnal Radiation Contrast on the Contraction of Radius of Maximum Wind during Intensification of Hurricane Edouard (2014)
typeJournal Paper
journal volume76
journal issue2
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-18-0131.1
journal fristpage421
journal lastpage432
treeJournal of the Atmospheric Sciences:;2018:;volume 076:;issue 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record