Show simple item record

contributor authorVigaud, Nicolas
contributor authorTing, M.
contributor authorLee, D.-E.
contributor authorBarnston, A. G.
contributor authorKushnir, Y.
date accessioned2019-09-19T10:09:12Z
date available2019-09-19T10:09:12Z
date copyright1/8/2018 12:00:00 AM
date issued2018
identifier otherjcli-d-17-0392.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4262132
description abstractAbstractSix recurrent thermal regimes are identified over continental North America from June to September through a k-means clustering applied to daily maximum temperature simulated by ECHAM5 forced by historical SSTs for 1930?2013 and validated using NCEP?DOE AMIP-II reanalysis over the 1980?2009 period. Four regimes are related to a synoptic wave pattern propagating eastward in the midlatitudes with embedded ridging anomalies that translate into maximum warming transiting along. Two other regimes, associated with broad continental warming and above average temperatures in the northeastern United States, respectively, are characterized by ridging anomalies over North America, Europe, and Asia that suggest correlated heat wave occurrences in these regions. Their frequencies are mainly related to both La Niña and warm conditions in the North Atlantic. Removing all variability beyond the seasonal cycle in the North Atlantic in ECHAM5 leads to a significant drop in the occurrences of the regime associated with warming in the northeastern United States. Superimposing positive (negative) anomalies mimicking the Atlantic multidecadal variability (AMV) in the North Atlantic translates into more (less) warming over the United States across all regimes, and does alter regime frequencies but less significantly. Regime frequency changes are thus primarily controlled by Atlantic SST variability on all time scales beyond the seasonal cycle, rather than mean SST changes, whereas the intensity of temperature anomalies is impacted by AMV SST forcing, because of upper-tropospheric warming and enhanced stability suppressing rising motion during the positive phase of the AMV.
publisherAmerican Meteorological Society
titleMultiscale Variability in North American Summer Maximum Temperatures and Modulations from the North Atlantic Simulated by an AGCM
typeJournal Paper
journal volume31
journal issue7
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-17-0392.1
journal fristpage2549
journal lastpage2562
treeJournal of Climate:;2018:;volume 031:;issue 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record