Show simple item record

contributor authorLiu, Yi-Chin
contributor authorFan, Jiwen
contributor authorXu, Kuan-Man
contributor authorZhang, Guang J.
date accessioned2019-09-19T10:08:01Z
date available2019-09-19T10:08:01Z
date copyright4/24/2018 12:00:00 AM
date issued2018
identifier otherjas-d-18-0019.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261904
description abstractAbstractWe use 3D cloud-resolving model (CRM) simulations of two mesoscale convective systems at midlatitudes and a simple statistical ensemble method to diagnose the scale dependency of convective momentum transport (CMT) and CMT-related properties and evaluate a parameterization scheme for the convection-induced pressure gradient (CIPG) developed by Gregory et al. Gregory et al. relate CIPG to a constant coefficient multiplied by mass flux and vertical mean wind shear. CRM results show that mass fluxes and CMT exhibit strong scale dependency in temporal evolution and vertical structure. The upgradient?downgradient CMT characteristics for updrafts are generally similar between small and large grid spacings, which is consistent with previous understanding, but they can be different for downdrafts across wide-ranging grid spacings. For the small to medium grid spacings (4?64 km), Gregory et al. reproduce some aspects of CIPG scale dependency except for underestimating the variations of CIPG as grid spacing decreases. However, for large grid spacings (128?512 km), Gregory et al. might even less adequately parameterize CIPG because it omits the contribution from either the nonlinear-shear or the buoyancy forcings. Further diagnosis of CRM results suggests that inclusion of nonlinear-shear forcing in Gregory et al. is needed for the large grid spacings. For the small to median grid spacings, a modified Gregory et al. with the three-updraft approach help better capture the variations of CIPG as grid spacing decreases compared to the single updraft approach. Further, the optimal coefficients used in Gregory et al. seem insensitive to grid spacings, but they might be different for updrafts and downdrafts, for different MCS types, and for zonal and meridional components.
publisherAmerican Meteorological Society
titleAnalysis of Cloud-Resolving Model Simulations for Scale Dependence of Convective Momentum Transport
typeJournal Paper
journal volume75
journal issue7
journal titleJournal of the Atmospheric Sciences
identifier doi10.1175/JAS-D-18-0019.1
journal fristpage2445
journal lastpage2472
treeJournal of the Atmospheric Sciences:;2018:;volume 075:;issue 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record