description abstract | AbstractA probabilistic forecasting method to predict thunderstorms in the European eastern Alps is developed. A statistical model links lightning occurrence from the ground-based Austrian Lightning Detection and Information System (ALDIS) detection network to a large set of direct and derived variables from a numerical weather prediction (NWP) system. The NWP system is the high-resolution run (HRES) of the European Centre for Medium-Range Weather Forecasts (ECMWF) with a grid spacing of 16 km. The statistical model is a generalized additive model (GAM) framework, which is estimated by Markov chain Monte Carlo (MCMC) simulation. Gradient boosting with stability selection serves as a tool for selecting a stable set of potentially nonlinear terms. Three grids from 64 ? 64 to 16 ? 16 km2 and five forecast horizons from 5 days to 1 day ahead are investigated to predict thunderstorms during afternoons (1200?1800 UTC). Frequently selected covariates for the nonlinear terms are variants of convective precipitation, convective potential available energy, relative humidity, and temperature in the midlayers of the troposphere, among others. All models, even for a lead time of 5 days, outperform a forecast based on climatology in an out-of-sample comparison. An example case illustrates that coarse spatial patterns are already successfully forecast 5 days ahead. | |