Show simple item record

contributor authorYing, Yue
contributor authorZhang, Fuqing
contributor authorAnderson, Jeffrey L.
date accessioned2019-09-19T10:04:38Z
date available2019-09-19T10:04:38Z
date copyright1/4/2018 12:00:00 AM
date issued2018
identifier othermwr-d-17-0336.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4261264
description abstractAbstractCovariance localization remedies sampling errors due to limited ensemble size in ensemble data assimilation. Previous studies suggest that the optimal localization radius depends on ensemble size, observation density and accuracy, as well as the correlation length scale determined by model dynamics. A comprehensive localization theory for multiscale dynamical systems with varying observation density remains an active area of research. Using a two-layer quasigeostrophic (QG) model, this study systematically evaluates the sensitivity of the best Gaspari?Cohn localization radius to changes in model resolution, ensemble size, and observing networks. Numerical experiment results show that the best localization radius is smaller for smaller-scale components of a QG flow, indicating its scale dependency. The best localization radius is rather insensitive to changes in model resolution, as long as the key dynamical processes are reasonably well represented by the low-resolution model with inflation methods that account for representation errors. As ensemble size decreases, the best localization radius shifts to smaller values. However, for nonlocal correlations between an observation and state variables that peak at a certain distance, decreasing localization radii further within this distance does not reduce analysis errors. Increasing the density of an observing network has two effects that both reduce the best localization radius. First, the reduced observation error spectral variance further constrains prior ensembles at large scales. Less large-scale contribution results in a shorter overall correlation length, which favors a smaller localization radius. Second, a denser network provides more independent pieces of information, thus a smaller localization radius still allows the same number of observations to constrain each state variable.
publisherAmerican Meteorological Society
titleOn the Selection of Localization Radius in Ensemble Filtering for Multiscale Quasigeostrophic Dynamics
typeJournal Paper
journal volume146
journal issue2
journal titleMonthly Weather Review
identifier doi10.1175/MWR-D-17-0336.1
journal fristpage543
journal lastpage560
treeMonthly Weather Review:;2018:;volume 146:;issue 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record