Show simple item record

contributor authorCallies, Jörn
date accessioned2019-09-19T10:03:07Z
date available2019-09-19T10:03:07Z
date copyright7/19/2018 12:00:00 AM
date issued2018
identifier otherjpo-d-18-0082.1.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4260995
description abstractAbstractFor small-scale turbulence to achieve water mass transformation and thus affect the large-scale overturning circulation, it must occur in stratified water. Observations show that abyssal turbulence is strongly enhanced in the bottom few hundred meters in regions with rough topography, and it is thought that these abyssal mixing layers are crucial for closing and shaping the overturning circulation. If it were left unopposed, however, bottom-intensified turbulence would mix away the observed mixing-layer stratification over the course of a few years. It is proposed here that the homogenizing tendency of mixing may be balanced by baroclinic restratification. It is shown that bottom-intensified mixing, if it occurs on a large-scale topographic slope such as a midocean ridge flank, not only erodes stratification but also tilts isopycnals in the bottom few hundred meters. This tilting of isopycnals generates a reservoir of potential energy that can be tapped into by submesoscale baroclinic eddies. The eddies slide dense water under light water and thus restratify the mixing layer, similar to what happens in the surface mixed layer. This restratification is shown to be effective enough to balance the homogenizing tendency of mixing and to maintain the observed mixing-layer stratification. This suggests that submesoscale baroclinic eddies may play a crucial role in providing the stratification mixing can act on, thus allowing sustained water mass transformation. Through their restratification of abyssal mixing layers, submesoscale eddies may therefore directly affect the strength and structure of the abyssal overturning circulation.
publisherAmerican Meteorological Society
titleRestratification of Abyssal Mixing Layers by Submesoscale Baroclinic Eddies
typeJournal Paper
journal volume48
journal issue9
journal titleJournal of Physical Oceanography
identifier doi10.1175/JPO-D-18-0082.1
journal fristpage1995
journal lastpage2010
treeJournal of Physical Oceanography:;2018:;volume 048:;issue 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record