Show simple item record

contributor authorGebetsberger, Manuel;Messner, Jakob W.;Mayr, Georg J.;Zeileis, Achim
date accessioned2018-01-03T11:02:57Z
date available2018-01-03T11:02:57Z
date copyright10/4/2017 12:00:00 AM
date issued2017
identifier othermwr-d-16-0388.1.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246551
description abstractAbstractRaw ensemble forecasts of precipitation amounts and their forecast uncertainty have large errors, especially in mountainous regions where the modeled topography in the numerical weather prediction model and real topography differ most. Therefore, statistical postprocessing is typically applied to obtain automatically corrected weather forecasts. This study applies the nonhomogenous regression framework as a state-of-the-art ensemble postprocessing technique to predict a full forecast distribution and improves its forecast performance with three statistical refinements. First of all, a novel split-type approach effectively accounts for unanimous zero precipitation predictions of the global ensemble model of the ECMWF. Additionally, the statistical model uses a censored logistic distribution to deal with the heavy tails of precipitation amounts. Finally, it is investigated which are the most suitable link functions for the optimization of regression coefficients for the scale parameter. These three refinements are tested for 10 stations in a small area of the European Alps for lead times from +24 to +144 h and accumulation periods of 24 and 6 h. Together, they improve probabilistic forecasts for precipitation amounts as well as the probability of precipitation events over the default postprocessing method. The improvements are largest for the shorter accumulation periods and shorter lead times, where the information of unanimous ensemble predictions is more important.
publisherAmerican Meteorological Society
titleFine-Tuning Nonhomogeneous Regression for Probabilistic Precipitation Forecasts: Unanimous Predictions, Heavy Tails, and Link Functions
typeJournal Paper
journal volume145
journal issue11
journal titleMonthly Weather Review
identifier doi10.1175/MWR-D-16-0388.1
journal fristpage4693
journal lastpage4708
treeMonthly Weather Review:;2017:;volume( 145 ):;issue: 011
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record