Show simple item record

contributor authorMankin, Justin S.;Smerdon, Jason E.;Cook, Benjamin I.;Williams, A. Park;Seager, Richard
date accessioned2018-01-03T11:01:44Z
date available2018-01-03T11:01:44Z
date copyright7/31/2017 12:00:00 AM
date issued2017
identifier otherjcli-d-17-0213.1.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4246252
description abstractAbstractClimate models project significant twenty-first-century declines in water availability over the American West from anthropogenic warming. However, the physical mechanisms underpinning this response are poorly characterized, as are the uncertainties from vegetation?s modulation of evaporative losses. To understand the drivers and uncertainties of future hydroclimate in the American West, a 35-member single model ensemble is used to examine the response of summer soil moisture and runoff to anthropogenic forcing. Widespread dry season soil moisture declines occur across the region despite increases in total water-year precipitation and ubiquitous increases in plant water-use efficiency. These modeled soil moisture declines are initially forced by significant snowpack losses that directly diminish summer soil water, even in regions where water-year precipitation increases. When snowpack priming is coupled with a warming- and CO2-induced shift in phenology and increased primary production, widespread increases in leaf area further reduces summer soil moisture and runoff by outpacing decreased stomatal conductance from high CO2. The net effects lead to the co-occurrence of both a ?greener? and ?drier? future across the western United States. Because simulated vegetation exerts a large influence on predicted changes in water availability in the American West, these findings highlight the importance of reducing the substantial uncertainties in the ecological processes increasingly incorporated into numerical Earth system models.
publisherAmerican Meteorological Society
titleThe Curious Case of Projected Twenty-First-Century Drying but Greening in the American West
typeJournal Paper
journal volume30
journal issue21
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-17-0213.1
journal fristpage8689
journal lastpage8710
treeJournal of Climate:;2017:;volume( 030 ):;issue: 021
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record