Show simple item record

contributor authorBrian Sheil
contributor authorWilliam Finnegan
date accessioned2017-12-30T12:56:11Z
date available2017-12-30T12:56:11Z
date issued2017
identifier other%28ASCE%29GM.1943-5622.0000667.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243613
description abstractOcean energy converters (OECs) are becoming a more popular source of electricity generated from the ocean. The main obstacle associated with the use of OECs is their high initial installation cost. In light of this, geotechnical engineers have been challenged with revisiting the foundation system, aiming toward more economical design. In this study, finite-element (FE) modeling was used to examine the influence of wave-induced lateral loads on a monopile, a common foundation system for OECs, where wave–structure–soil interaction was considered explicitly. Measured data were used to arrive at two different wave scenarios in conjunction with both regular and irregular wave-surface profiles; the wave-induced lateral forces on the monopile foundation were calculated for each case using diffraction theory and used as input loads in the FE model. A parametric study was then undertaken to examine the influence of a range of wave characteristics and pile/soil parameters on monopile response. The results of the study highlight the overconservatism associated with current monopiles supporting OECs and identify slender piles as a more economical solution.
publisherAmerican Society of Civil Engineers
titleNumerical Simulations of Wave–Structure–Soil Interaction of Offshore Monopiles
typeJournal Paper
journal volume17
journal issue1
journal titleInternational Journal of Geomechanics
identifier doi10.1061/(ASCE)GM.1943-5622.0000667
page04016024
treeInternational Journal of Geomechanics:;2017:;Volume ( 017 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record