Show simple item record

contributor authorXianjing Kong
contributor authorJingmao Liu
contributor authorDegao Zou
contributor authorHuabei Liu
date accessioned2017-12-30T12:53:32Z
date available2017-12-30T12:53:32Z
date issued2016
identifier other%28ASCE%29GM.1943-5622.0000584.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4243003
description abstractIn this study, cyclic triaxial tests were performed on Zipingpu gravel, and they were followed by a discrete element study that was designed to investigate the stress-dilatancy relationship of gravelly soils under cyclic loading in triaxial stress states. Several conclusions emerged from the results. (1) A nearly linear relationship was found between the stress ratio η=q/p and the dilatancy ratio Dp=dεvp/dεsp under both conventional compression and extension monotonic loading. The slope parameter α, which relates η and Dp, was smaller during triaxial compression; (2) The stress-dilatancy relationship was different during the virgin and cyclic loading. The dilatancy line under cyclic loading was located inside the virgin/monotonic loading dilatancy lines, and the dilatancy relationship was related to the location of the most recent load reversal point; and (3) A nearly parallel linear relationship was found between η and Dp in the dη>0 and dη<0 paths under cyclic loading, with α smaller under cyclic loading than under virgin loading. Numerical simulations were performed using discrete element software, and the results of these simulations showed that the stress-dilatancy characteristics under two-way cyclic loading were similar to the stress-dilatancy characteristics under one-way cyclic loading. The study also found that a hyperbolic relationship exists between the input plastic work and the particle breakage for Zipingpu gravel, regardless of the initial void ratio or the confining pressure under both monotonic and cyclic loading.
publisherAmerican Society of Civil Engineers
titleStress-Dilatancy Relationship of Zipingpu Gravel under Cyclic Loading in Triaxial Stress States
typeJournal Paper
journal volume16
journal issue4
journal titleInternational Journal of Geomechanics
identifier doi10.1061/(ASCE)GM.1943-5622.0000584
page04016001
treeInternational Journal of Geomechanics:;2016:;Volume ( 016 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record