Show simple item record

contributor authorVan Den Broeke, Matthew S.
contributor authorVan Den Broeke, Cynthia A.
date accessioned2017-06-09T17:36:47Z
date available2017-06-09T17:36:47Z
date copyright2015/04/01
date issued2015
identifier issn0882-8156
identifier otherams-88077.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231817
description abstractfamily of four waterspouts was produced by a convective cell over western Lake Michigan on 12 September 2013. This storm initiated along a boundary north of a mesolow in a low-level cold-air advection regime, and developed supercell characteristics once the second waterspout was in progress. Polarimetric characteristics of the storm, and of the development of supercell character, are presented. These observations represent the first documented polarimetric radar observations of waterspout-producing convection in the Great Lakes region. Unusually high differential reflectivity values accompanied this storm and its initiating boundary. The high values along the boundary are partially explained by a high density of dragonflies. High differential reflectivity values were present through much of the storm of interest despite very low aerosol concentration at low levels in the lake-influenced air mass. Finally, this case illustrates the importance of environmental awareness on waterspout-favorable days, especially when boundaries are nearby to serve as a potential source of enhanced environmental vertical vorticity.
publisherAmerican Meteorological Society
titlePolarimetric Radar Observations from a Waterspout-Producing Thunderstorm
typeJournal Paper
journal volume30
journal issue2
journal titleWeather and Forecasting
identifier doi10.1175/WAF-D-14-00114.1
journal fristpage329
journal lastpage348
treeWeather and Forecasting:;2015:;volume( 030 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record