description abstract | tornadic vortex signature (TVS) is a degraded Doppler velocity signature of a tornado that occurs when the core region of a tornado is smaller than the half-power beamwidth of the sampling Doppler radar. Soon after the TVS was discovered in the mid-1970s, simulations were conducted to verify that the signature did indeed represent a tornado. The simulations, which used a uniform reflectivity distribution across a Rankine vortex model, indicated that the extreme positive and negative Doppler velocity values of the signature should be separated by about one half-power beamwidth regardless of tornado size or strength. For a Weather Surveillance Radar-1988 Doppler (WSR-88D) with an effective half-power beamwidth of approximately 1.4° and data collected at 1.0° azimuthal intervals, the two extreme Doppler velocity values should be separated by 1.0°. However, with the recent advent of 0.5° azimuthal sampling (?superresolution?) by WSR-88Ds at lower elevation angles, some of the extreme Doppler velocity values unexpectedly were found to be separated by 0.5° instead of 1.0° azimuthal intervals. To understand this dilemma, the choice of vortex model and reflectivity profile is investigated. It is found that the choice of vortex model does not have a significant effect on the simulation results. However, using a reflectivity profile with a minimum at the vortex center does make a difference. The revised simulations indicate that it is possible for the distance between the peak Doppler velocity values of a TVS to be separated by 0.5° with superresolution data collection. | |