Show simple item record

contributor authorDe Pondeca, Manuel S. F. V.
contributor authorManikin, Geoffrey S.
contributor authorDiMego, Geoff
contributor authorBenjamin, Stanley G.
contributor authorParrish, David F.
contributor authorPurser, R. James
contributor authorWu, Wan-Shu
contributor authorHorel, John D.
contributor authorMyrick, David T.
contributor authorLin, Ying
contributor authorAune, Robert M.
contributor authorKeyser, Dennis
contributor authorColman, Brad
contributor authorMann, Greg
contributor authorVavra, Jamie
date accessioned2017-06-09T17:35:26Z
date available2017-06-09T17:35:26Z
date copyright2011/10/01
date issued2011
identifier issn0882-8156
identifier otherams-87713.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231413
description abstractn 2006, the National Centers for Environmental Prediction (NCEP) implemented the Real-Time Mesoscale Analysis (RTMA) in collaboration with the Earth System Research Laboratory and the National Environmental, Satellite, and Data Information Service (NESDIS). In this work, a description of the RTMA applied to the 5-km resolution conterminous U.S. grid of the National Digital Forecast Database is given. Its two-dimensional variational data assimilation (2DVAR) component used to analyze near-surface observations is described in detail, and a brief discussion of the remapping of the NCEP stage II quantitative precipitation amount and NESDIS Geostationary Operational Environmental Satellite (GOES) sounder effective cloud amount to the 5-km grid is offered. Terrain-following background error covariances are used with the 2DVAR approach, which produces gridded fields of 2-m temperature, 2-m specific humidity, 2-m dewpoint, 10-m U and V wind components, and surface pressure. The estimate of the analysis uncertainty via the Lanczos method is briefly described. The strength of the 2DVAR is illustrated by (i) its ability to analyze a June 2007 cold temperature pool over the Washington, D.C., area; (ii) its fairly good analysis of a December 2008 mid-Atlantic region high-wind event that started from a very weak first guess; and (iii) its successful recovery of the finescale moisture features in a January 2010 case study over southern California. According to a cross-validation analysis for a 15-day period during November 2009, root-mean-square error improvements over the first guess range from 16% for wind speed to 45% for specific humidity.
publisherAmerican Meteorological Society
titleThe Real-Time Mesoscale Analysis at NOAA’s National Centers for Environmental Prediction: Current Status and Development
typeJournal Paper
journal volume26
journal issue5
journal titleWeather and Forecasting
identifier doi10.1175/WAF-D-10-05037.1
journal fristpage593
journal lastpage612
treeWeather and Forecasting:;2011:;volume( 026 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record