Show simple item record

contributor authorCoffer, Brice E.
contributor authorParker, Matthew D.
date accessioned2017-06-09T17:34:19Z
date available2017-06-09T17:34:19Z
date copyright2017/01/01
date issued2016
identifier issn0027-0644
identifier otherams-87368.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4231029
description abstracthe composite near-storm environments of nontornadic and tornadic supercells sampled during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2) both appear to be generally favorable for supercells and tornadoes. It has not been clear whether small differences between the two environments (e.g., more streamwise horizontal vorticity in the lowest few hundred meters above the ground in the tornadic composite) are actually determinative of storms? tornadic potential. From the VORTEX2 composite environments, simulations of a nontornadic and a tornadic supercell are used to investigate storm-scale differences that ultimately favor tornadogenesis or tornadogenesis failure. Both environments produce strong supercells with robust midlevel mesocyclones and hook echoes, though the tornadic supercell has a more intense low-level updraft and develops a tornado-like vortex exceeding the EF3 wind speed threshold. In contrast, the nontornadic supercell only produces shallow vortices, which never reach the EF0 wind speed threshold. Even though the nontornadic supercell readily produces subtornadic surface vortices, these vortices fail to be stretched by the low-level updraft. This is due to a disorganized low-level mesocyclone caused by predominately crosswise vorticity in the lowest few hundred meters above ground level within the nontornadic environment. In contrast, the tornadic supercell ingests predominately streamwise horizontal vorticity, which promotes a strong low-level mesocyclone with enhanced dynamic lifting and stretching of surface vertical vorticity. These results support the idea that larger streamwise vorticity leads to a more intense low-level mesocyclone, whereas predominately crosswise vorticity yields a less favorable configuration of the low-level mesocyclone for tornadogenesis.
publisherAmerican Meteorological Society
titleSimulated Supercells in Nontornadic and Tornadic VORTEX2 Environments
typeJournal Paper
journal volume145
journal issue1
journal titleMonthly Weather Review
identifier doi10.1175/MWR-D-16-0226.1
journal fristpage149
journal lastpage180
treeMonthly Weather Review:;2016:;volume( 145 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record