Show simple item record

contributor authorChen, Nan
contributor authorMajda, Andrew J.
date accessioned2017-06-09T17:33:44Z
date available2017-06-09T17:33:44Z
date copyright2016/12/01
date issued2016
identifier issn0027-0644
identifier otherams-87243.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4230891
description abstractn this paper, a general conditional Gaussian framework for filtering complex turbulent systems is introduced. Despite the conditional Gaussianity, such systems are nevertheless highly nonlinear and are able to capture the non-Gaussian features of nature. The special structure of the filter allows closed analytical formulas for updating the posterior states and is thus computationally efficient. An information-theoretic framework is developed to assess the model error in the filter estimates. Three types of applications in filtering conditional Gaussian turbulent systems with model error are illustrated. First, dyad models are utilized to illustrate that ignoring the energy-conserving nonlinear interactions in designing filters leads to significant model errors in filtering turbulent signals from nature. Then a triad (noisy Lorenz 63) model is adopted to understand the model error due to noise inflation and underdispersion. It is also utilized as a test model to demonstrate the efficiency of a novel algorithm, which exploits the conditional Gaussian structure, to recover the time-dependent probability density functions associated with the unobserved variables. Furthermore, regarding model parameters as augmented state variables, the filtering framework is applied to the study of parameter estimation with detailed mathematical analysis. A new approach with judicious model error in the equations associated with the augmented state variables is proposed, which greatly enhances the efficiency in estimating model parameters. Other examples of this framework include recovering random compressible flows from noisy Lagrangian tracers, filtering the stochastic skeleton model of the Madden?Julian oscillation (MJO), and initialization of the unobserved variables in predicting the MJO/monsoon indices.
publisherAmerican Meteorological Society
titleFiltering Nonlinear Turbulent Dynamical Systems through Conditional Gaussian Statistics
typeJournal Paper
journal volume144
journal issue12
journal titleMonthly Weather Review
identifier doi10.1175/MWR-D-15-0437.1
journal fristpage4885
journal lastpage4917
treeMonthly Weather Review:;2016:;volume( 144 ):;issue: 012
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record