Show simple item record

contributor authorVavrus, Steve
contributor authorNotaro, Michael
contributor authorZarrin, Azar
date accessioned2017-06-09T17:30:17Z
date available2017-06-09T17:30:17Z
date copyright2013/01/01
date issued2012
identifier issn0027-0644
identifier otherams-86387.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229939
description abstract20-km regional climate model, the Abdus Salam International Centre for Theoretical Physics Regional Climate Model version 4 (ICTP RegCM4), is employed to investigate heavy lake-effect snowfall (HLES) over the Great Lakes Basin and the role of ice cover in regulating these events. When coupled to a lake model and driven with atmospheric reanalysis data between 1976 and 2002, RegCM4 reproduces the major characteristics of HLES. The influence of lake ice cover on HLES is investigated through 10 case studies (2 per Great Lake), in which a simulated heavy lake-effect event is compared with a companion simulation having 100% ice cover imposed on one or all of the Great Lakes. These experiments quantify the impact of ice cover on downstream snowfall and demonstrate that Lake Superior has the strongest, most widespread influence on heavy snowfall and Lake Ontario the least. Ice cover strongly affects a wide range of atmospheric variables above and downstream of lakes during HLES, including snowfall, surface energy fluxes, wind speed, temperature, moisture, clouds, and air pressure. Averaged among the 10 events, complete ice coverage causes major reductions in lake-effect snowfall (>80%) and turbulent heat fluxes over the lakes (>90%), less low cloudiness, lower temperatures, and higher air pressure. Another important consequence is a consistent weakening (30%?40%) of lower-tropospheric winds over the lakes when completely frozen. This momentum reduction further decreases over-lake evaporation and weakens downstream wind convergence, thus mitigating lake-effect snowfall. This finding suggests a secondary, dynamical mechanism by which ice cover affects downstream snowfall during HLES events, in addition to the more widely recognized thermodynamic influence.
publisherAmerican Meteorological Society
titleThe Role of Ice Cover in Heavy Lake-Effect Snowstorms over the Great Lakes Basin as Simulated by RegCM4
typeJournal Paper
journal volume141
journal issue1
journal titleMonthly Weather Review
identifier doi10.1175/MWR-D-12-00107.1
journal fristpage148
journal lastpage165
treeMonthly Weather Review:;2012:;volume( 141 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record