Show simple item record

contributor authorSmith, Tracy Lorraine
contributor authorBenjamin, Stanley G.
contributor authorGutman, Seth I.
contributor authorSahm, Susan
date accessioned2017-06-09T17:28:39Z
date available2017-06-09T17:28:39Z
date copyright2007/08/01
date issued2007
identifier issn0027-0644
identifier otherams-85982.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4229489
description abstractIntegrated precipitable water (IPW) estimates derived from time delays in the arrival of global positioning system (GPS) satellite signals are a relatively recent, high-frequency source of atmospheric moisture information available for real-time data assimilation. Different experimental versions of the Rapid Update Cycle (RUC) have assimilated these observations to assess GPS-IPW impact on moisture forecasts. In these tests, GPS-IPW data have proven to be a useful real-time source of moisture information, leading to more accurate short-range moisture forecasts when added to other observations. A multiyear experiment with parallel (one with GPS-IPW processed 24 h after the fact, one without) 3-h cycles using the original 60-km RUC was run from 1999 to 2004 with verification of each cycle against rawinsonde observations. This experiment showed a steady increase in the positive impact in short-range relative humidity (RH) forecasts due to the GPS-IPW data as the number of observing sites increased from 18 to almost 300 (as of 2004) across the United States and Canada. Positive impact from GPS-IPW on 850?700-hPa RH forecasts was also evident in 6- and 12-h forecasts. The impact of GPS-IPW data was also examined on forecasts from the more recent 20-km RUC, including a 1-h assimilation cycle and improved assimilation and physical parameterizations, now using real-time GPS-IPW retrievals available 30 min after valid time. In a 3-month comparison during the March?May 2004 period, 20-km RUC cycles with and without assimilation of GPS-IPW were compared with IPW for 3-, 6-, 9-, and 12-h forecasts. Using this measure, assimilation of GPS-IPW data led to the strongest improvements in the 3- and 6-h forecasts and smaller but still evident improvements in 9- and 12-h forecasts. In a severe convective weather case, inclusion of GPS-IPW data improved forecasts of convective available potential energy, an important predictor of severe storm potential, and relative humidity. Positive impact from GPS-IPW assimilation was found to vary over season, geographical location, and time of day, apparently related to variations in vertical mixing. For example, GPS-IPW has a stronger effect on improving RH forecasts at 850 hPa at nighttime (than daytime) and in cooler seasons (than warmer seasons) when surface moisture observations are less representative of conditions aloft. As a result of these studies, assimilation of GPS-IPW was added to the operational RUC run at NOAA/NCEP in June 2005 and to the operational North American Mesoscale model (also at NCEP) in June 2006 to improve their accuracy for short-range moisture forecasts.
publisherAmerican Meteorological Society
titleShort-Range Forecast Impact from Assimilation of GPS-IPW Observations into the Rapid Update Cycle
typeJournal Paper
journal volume135
journal issue8
journal titleMonthly Weather Review
identifier doi10.1175/MWR3436.1
journal fristpage2914
journal lastpage2930
treeMonthly Weather Review:;2007:;volume( 135 ):;issue: 008
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record