Show simple item record

contributor authorBarceló-Llull, Bàrbara
contributor authorPallàs-Sanz, Enric
contributor authorSangrà, Pablo
contributor authorMartínez-Marrero, Antonio
contributor authorEstrada-Allis, Sheila N.
contributor authorArístegui, Javier
date accessioned2017-06-09T17:22:30Z
date available2017-06-09T17:22:30Z
date copyright2017/05/01
date issued2017
identifier issn0022-3670
identifier otherams-84016.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4227306
description abstractertical motions play a key role in the enhancement of primary production within mesoscale eddies through the introduction of nutrients into the euphotic layer. However, the details of the vertical velocity field w driving these enhancements remain under discussion. For the first time the mesoscale w associated with an intrathermocline eddy is computed and analyzed using in situ high-resolution three-dimensional (3D) fields of density and horizontal velocity by resolving a generalized omega equation valid for high Rossby numbers. In the seasonal pycnocline the diagnosed w reveals a multipolar structure with upwelling and downwelling cells located at the eddy periphery. In the main pycnocline w is characterized by a dipolar structure with downwelling velocities upstream of the propagation path and upwelling velocities downstream. Maximum values of w reach 6.4 m day?1. An observed enhancement of chlorophyll-a at the eddy periphery coincides with the location of the upwelling and downwelling cells. Analysis of the forcing terms of the generalized omega equation indicates that the mechanisms behind the dipolar structure of the w field are a combination of horizontal deformation and advection of vertical relative vorticity by ageostrophic vertical shear. The wind during the eddy sampling was rather constant and uniform with a speed of 5 m s?1. Diagnosed nonlinear Ekman pumping leads to a dipolar pattern that mirrors the inferred w. Horizontal ageostrophic secondary circulation is dominated by centripetal acceleration and closes the dipole w structure. Vertical fluxes act to maintain the intrathermocline eddy structure.
publisherAmerican Meteorological Society
titleAgeostrophic Secondary Circulation in a Subtropical Intrathermocline Eddy
typeJournal Paper
journal volume47
journal issue5
journal titleJournal of Physical Oceanography
identifier doi10.1175/JPO-D-16-0235.1
journal fristpage1107
journal lastpage1123
treeJournal of Physical Oceanography:;2017:;Volume( 047 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record