Show simple item record

contributor authorVerdy, Ariane
contributor authorMazloff, Matthew R.
contributor authorCornuelle, Bruce D.
contributor authorKim, Sung Yong
date accessioned2017-06-09T17:20:11Z
date available2017-06-09T17:20:11Z
date copyright2014/01/01
date issued2013
identifier issn0022-3670
identifier otherams-83395.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226615
description abstractffects of atmospheric forcing on coastal sea surface height near Port San Luis, central California, are investigated using a regional state estimate and its adjoint. The physical pathways for the propagation of nonlocal [O(100 km)] wind stress effects are identified through adjoint sensitivity analyses, with a cost function that is localized in space so that the adjoint shows details of the propagation of sensitivities. Transfer functions between wind stress and SSH response are calculated and compared to previous work. It is found that (i) the response to local alongshore wind stress dominates on short time scales of O(1 day); (ii) the effect of nonlocal winds dominates on longer time scales and is carried by coastally trapped waves, as well as inertia?gravity waves for offshore wind stress; and (iii) there are significant seasonal variations in the sensitivity of SSH to wind stress due to changes in stratification. In a more stratified ocean, the damping of sensitivities to local and offshore winds is reduced, allowing for a larger and longer-lasting SSH response to wind stress.
publisherAmerican Meteorological Society
titleWind-Driven Sea Level Variability on the California Coast: An Adjoint Sensitivity Analysis
typeJournal Paper
journal volume44
journal issue1
journal titleJournal of Physical Oceanography
identifier doi10.1175/JPO-D-13-018.1
journal fristpage297
journal lastpage318
treeJournal of Physical Oceanography:;2013:;Volume( 044 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record