Show simple item record

contributor authorDoney, Scott C.
contributor authorYeager, Steve
contributor authorDanabasoglu, Gokhan
contributor authorLarge, William G.
contributor authorMcWilliams, James C.
date accessioned2017-06-09T17:18:41Z
date available2017-06-09T17:18:41Z
date copyright2007/07/01
date issued2007
identifier issn0022-3670
identifier otherams-82964.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4226136
description abstractThe interannual variability in upper-ocean (0?400 m) temperature and governing mechanisms for the period 1968?97 are quantified from a global ocean hindcast simulation driven by atmospheric reanalysis and satellite data products. The unconstrained simulation exhibits considerable skill in replicating the observed interannual variability in vertically integrated heat content estimated from hydrographic data and monthly satellite sea surface temperature and sea surface height data. Globally, the most significant interannual variability modes arise from El Niño?Southern Oscillation and the Indian Ocean zonal mode, with substantial extension beyond the Tropics into the midlatitudes. In the well-stratified Tropics and subtropics, net annual heat storage variability is driven predominately by the convergence of the advective heat transport, mostly reflecting velocity anomalies times the mean temperature field. Vertical velocity variability is caused by remote wind forcing, and subsurface temperature anomalies are governed mostly by isopycnal displacements (heave). The dynamics at mid- to high latitudes are qualitatively different and vary regionally. Interannual temperature variability is more coherent with depth because of deep winter mixing and variations in western boundary currents and the Antarctic Circumpolar Current that span the upper thermocline. Net annual heat storage variability is forced by a mixture of local air?sea heat fluxes and the convergence of the advective heat transport, the latter resulting from both velocity and temperature anomalies. Also, density-compensated temperature changes on isopycnal surfaces (spice) are quantitatively significant.
publisherAmerican Meteorological Society
titleMechanisms Governing Interannual Variability of Upper-Ocean Temperature in a Global Ocean Hindcast Simulation
typeJournal Paper
journal volume37
journal issue7
journal titleJournal of Physical Oceanography
identifier doi10.1175/JPO3089.1
journal fristpage1918
journal lastpage1938
treeJournal of Physical Oceanography:;2007:;Volume( 037 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record