Show simple item record

contributor authorZhang, Xuejun
contributor authorTang, Qiuhong
contributor authorLiu, Xingcai
contributor authorLeng, Guoyong
contributor authorLi, Zhe
date accessioned2017-06-09T17:17:05Z
date available2017-06-09T17:17:05Z
date copyright2017/01/01
date issued2016
identifier issn1525-755X
identifier otherams-82389.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225497
description abstractn this paper, an experimental soil moisture drought monitoring and seasonal forecasting framework based on the Variable Infiltration Capacity model (VIC) over southwestern China (SW) is presented. Satellite precipitation data are used to force VIC for a near-real-time estimate of land surface hydrologic conditions. Initialized with satellite-aided monitoring (MONIT), the climate model (CFSv2)-based forecast (MONIT+CFSv2) and ensemble streamflow prediction (ESP)-based forecast (MONIT+ESP) are both performed. One dry season drought and one wet season drought are employed to test the ability of this framework in terms of real-time tracking and predicting the evolution of soil moisture (SM) drought, respectively. The results show that the skillful CFSv2 climate forecasts (CFs) are only found at the first month. The satellite-aided monitoring is able to provide a reasonable estimate of forecast initial conditions (ICs) in real-time mode. In the presented cases, MONIT+CFSv2 forecast exhibits comparable performance against the observation-based estimates for the first month, whereas the predictive skill largely drops beyond 1 month. Compared to MONIT+ESP, MONIT+CFSv2 ensembles give more skillful SM drought forecast during the dry season, as indicated by a smaller ensemble range, while the added value of MONIT+CFSv2 is marginal during the wet season. A quantitative attribution analysis of SM forecast uncertainty demonstrates that SM forecast skill is mostly controlled by ICs at the first month and that uncertainties in CFs have the largest contribution to SM forecast errors at longer lead times. This study highlights a value of this framework in generating near-real-time ICs and providing a reliable SM drought prediction with 1 month ahead, which may greatly benefit drought diagnosis, assessment, and early warning.
publisherAmerican Meteorological Society
titleSoil Moisture Drought Monitoring and Forecasting Using Satellite and Climate Model Data over Southwestern China
typeJournal Paper
journal volume18
journal issue1
journal titleJournal of Hydrometeorology
identifier doi10.1175/JHM-D-16-0045.1
journal fristpage5
journal lastpage23
treeJournal of Hydrometeorology:;2016:;Volume( 018 ):;issue: 001
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record