Show simple item record

contributor authorHirsch, A. L.
contributor authorPitman, A. J.
contributor authorHaverd, V.
date accessioned2017-06-09T17:16:54Z
date available2017-06-09T17:16:54Z
date copyright2016/10/01
date issued2016
identifier issn1525-755X
identifier otherams-82350.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4225454
description abstracthis paper presents a methodology for examining land?atmosphere coupling in a regional climate model by examining how the resistances to moisture transfer from the land to the atmosphere control the surface turbulent energy fluxes. Perturbations were applied individually to the aerodynamic resistance from the soil surface to the displacement height, the aerodynamic resistance from the displacement height to the reference level, the stomatal resistance, and the leaf boundary layer resistance. Only perturbations to the aerodynamic resistance from the soil surface to the displacement height systematically affected 2-m air temperature for the shrub and evergreen boreal forest plant functional types (PFTs). This was associated with this resistance systematically increasing the terrestrial and atmospheric components of the land?atmosphere coupling strength through changes in the partitioning of the surface energy balance. Perturbing the other resistances did contribute to changing the partitioning of the surface energy balance but did not lead to systematic changes in the 2-m air temperature. The results suggest that land?atmosphere coupling in the modeling system presented here acts mostly through the aerodynamic resistance from the soil surface to the displacement height, which is a function of both the friction velocity and vegetation height and cover. The results show that a resistance pathway framework can be used to examine how changes in the resistances affect the partitioning of the surface energy balance and how this subsequently influences surface climate through land?atmosphere coupling. Limitations in the present analysis include grid-scale rather than PFT-scale analysis, the exclusion of resistance dependencies, and the linearity assumption of how temperature responds to a resistance perturbation.
publisherAmerican Meteorological Society
titleEvaluating Land–Atmosphere Coupling Using a Resistance Pathway Framework
typeJournal Paper
journal volume17
journal issue10
journal titleJournal of Hydrometeorology
identifier doi10.1175/JHM-D-15-0204.1
journal fristpage2615
journal lastpage2630
treeJournal of Hydrometeorology:;2016:;Volume( 017 ):;issue: 010
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record