Show simple item record

contributor authorLucas-Picher, Philippe
contributor authorBoberg, Fredrik
contributor authorChristensen, Jens H.
contributor authorBerg, Peter
date accessioned2017-06-09T17:15:11Z
date available2017-06-09T17:15:11Z
date copyright2013/08/01
date issued2013
identifier issn1525-755X
identifier otherams-81879.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224930
description abstracto retain the sequence of events of a regional climate model (RCM) simulation driven by a reanalysis, a method that has not been widely adopted uses an RCM with frequent reinitializations toward its driving field. In this regard, this study highlights the benefits of an RCM simulation with frequent (daily) reinitializations compared to a standard continuous RCM simulation. Both simulations are carried out with the RCM HIRHAM5, driven with the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) data, over the 12-km-resolution European Coordinated Regional Climate Downscaling Experiment (CORDEX) domain covering the period 1989?2009. The analysis of daily precipitation shows improvements in the sequence of events and the maintenance of the added value from the standard continuous RCM simulation. The validation of the two RCM simulations with observations reveals that the simulation with reinitializations indeed improves the temporal correlation. Furthermore, the RCM simulation with reinitializations has lower systematic errors compared to the continuous simulation, which has a tendency to be too wet. A comparison of the distribution of wet day precipitation intensities shows similar added value in the continuous and reinitialized simulations with higher variability and extremes compared to the driving field ERA-Interim. Overall, the results suggest that the finescale climate dataset of the RCM simulation with reinitializations better suits the needs of impact studies by providing a sequence of events matching closely the observations, while limiting systematic errors and generating reliable added value. Downsides of the method with reinitializations are increased computational costs and the introduction of temporal discontinuities that are similar to those of a reanalysis.
publisherAmerican Meteorological Society
titleDynamical Downscaling with Reinitializations: A Method to Generate Finescale Climate Datasets Suitable for Impact Studies
typeJournal Paper
journal volume14
journal issue4
journal titleJournal of Hydrometeorology
identifier doi10.1175/JHM-D-12-063.1
journal fristpage1159
journal lastpage1174
treeJournal of Hydrometeorology:;2013:;Volume( 014 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record