Show simple item record

contributor authorListon, Glen E.
contributor authorElder, Kelly
date accessioned2017-06-09T17:13:54Z
date available2017-06-09T17:13:54Z
date copyright2006/04/01
date issued2006
identifier issn1525-755X
identifier otherams-81492.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224501
description abstractAn intermediate-complexity, quasi?physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are distributed: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, surface pressure, and precipitation. To produce these distributions, MicroMet assumes that at least one value of each of the following meteorological variables are available for each time step, somewhere within, or near, the simulation domain: air temperature, relative humidity, wind speed, wind direction, and precipitation. These variables are collected at most meteorological stations. For the incoming solar and longwave radiation, and surface pressure, either MicroMet can use its submodels to generate these fields, or it can create the distributions from observations as part of a data assimilation procedure. MicroMet includes a preprocessor component that analyzes meteorological data, then identifies and corrects potential deficiencies. Since providing temporally and spatially continuous atmospheric forcing data for terrestrial models is a core objective of MicroMet, the preprocessor also fills in any missing data segments with realistic values. Data filling is achieved by employing a variety of procedures, including an autoregressive integrated moving average calculation for diurnally varying variables (e.g., air temperature). To create the distributed atmospheric fields, spatial interpolations are performed using the Barnes objective analysis scheme, and subsequent corrections are made to the interpolated fields using known temperature?elevation, wind?topography, humidity?cloudiness, and radiation?cloud?topography relationships.
publisherAmerican Meteorological Society
titleA Meteorological Distribution System for High-Resolution Terrestrial Modeling (MicroMet)
typeJournal Paper
journal volume7
journal issue2
journal titleJournal of Hydrometeorology
identifier doi10.1175/JHM486.1
journal fristpage217
journal lastpage234
treeJournal of Hydrometeorology:;2006:;Volume( 007 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record