Show simple item record

contributor authorRotstayn, Leon D.
contributor authorCollier, Mark A.
contributor authorShindell, Drew T.
contributor authorBoucher, Olivier
date accessioned2017-06-09T17:11:32Z
date available2017-06-09T17:11:32Z
date copyright2015/09/01
date issued2015
identifier issn0894-8755
identifier otherams-80860.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223798
description abstractinear regression is used to examine the relationship between simulated changes in historical global-mean surface temperature (GMST) and global-mean aerosol effective radiative forcing (ERF) in 14 climate models from CMIP5. The models have global-mean aerosol ERF that ranges from ?0.35 to ?1.60 W m?2 for 2000 relative to 1850. It is shown that aerosol ERF is the dominant factor that determines intermodel variations in simulated GMST change: correlations between aerosol ERF and simulated changes in GMST exceed 0.9 for linear trends in GMST over all periods that begin between 1860 and 1950 and end between 1995 and 2005. Comparison of modeled and observed GMST trends for these time periods gives an inferred global-mean aerosol ERF of ?0.92 W m?2.On average, transient climate sensitivity is roughly 40% larger with respect to historical forcing from aerosols than well-mixed greenhouse gases. This enhanced sensitivity explains the dominant effect of aerosol forcing on simulated changes in GMST: it is estimated that 85% of the intermodel variance of simulated GMST change is explained by variations in aerosol ERF, but without the enhanced sensitivity less than half would be explained. Physically, the enhanced sensitivity is caused by a combination of 1) the larger concentration of aerosol forcing in the midlatitudes of the Northern Hemisphere, where positive feedbacks are stronger and transient warming is faster than in the Southern Hemisphere, and 2) the time evolution of aerosol forcing, which levels out earlier than forcing from well-mixed greenhouse gases.
publisherAmerican Meteorological Society
titleWhy Does Aerosol Forcing Control Historical Global-Mean Surface Temperature Change in CMIP5 Models?
typeJournal Paper
journal volume28
journal issue17
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-14-00712.1
journal fristpage6608
journal lastpage6625
treeJournal of Climate:;2015:;volume( 028 ):;issue: 017
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record