Show simple item record

contributor authorForsythe, N.
contributor authorHardy, A. J.
contributor authorFowler, H. J.
contributor authorBlenkinsop, S.
contributor authorKilsby, C. G.
contributor authorArcher, D. R.
contributor authorHashmi, M. Z.
date accessioned2017-06-09T17:11:04Z
date available2017-06-09T17:11:04Z
date copyright2015/05/01
date issued2015
identifier issn0894-8755
identifier otherams-80726.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223650
description abstractlouds play a key role in hydroclimatological variability by modulating the surface energy balance and air temperature. This study utilizes MODIS cloud cover data, with corroboration from global meteorological reanalysis (ERA-Interim) cloud estimates, to describe a cloud climatology for the upper Indus River basin. It has specific focus on tributary catchments in the northwest of the region, which contribute a large fraction of basin annual runoff, including 65% of flow originating above Besham, Pakistan or 50 km3 yr?1 in absolute terms. In this region there is substantial cloud cover throughout the year, with spatial means of 50%?80% depending on the season. The annual cycles of catchment spatial mean daytime and nighttime cloud cover fraction are very similar. This regional diurnal homogeneity belies substantial spatial variability, particularly along seasonally varying vertical profiles (based on surface elevation).Correlations between local near-surface air temperature observations and MODIS cloud cover fraction confirm the strong linkages between local atmospheric conditions and near-surface climate variability. These correlations are interpreted in terms of seasonal and diurnal variations in apparent cloud radiative effect and its influence on near-surface air temperature in the region. The potential role of cloud radiative effect in recognized seasonally and diurnally asymmetrical temperature trends over recent decades is also assessed by relating these locally observed trends to ERA-Interim-derived trends in cloud cover fraction. Specifically, reduction in nighttime cloud cover fraction relative to daytime conditions over recent decades appears to provide a plausible physical mechanism for the observed nighttime cooling of surface air temperature in summer months.
publisherAmerican Meteorological Society
titleA Detailed Cloud Fraction Climatology of the Upper Indus Basin and Its Implications for Near-Surface Air Temperature
typeJournal Paper
journal volume28
journal issue9
journal titleJournal of Climate
identifier doi10.1175/JCLI-D-14-00505.1
journal fristpage3537
journal lastpage3556
treeJournal of Climate:;2015:;volume( 028 ):;issue: 009
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record